Skip to main content
Log in

Central Amazonian floodplain forests: Tree adaptations in a pulsing system

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Amazonian floodplain forests are characterized by an annual flood pulse with changes of the water table that exceed 10 meters. Seedlings and adult trees are waterlogged or submerged for continuous periods lasting up to seven months per year. The monomodal flood pulse of the rivers causes drastic changes in the bioavailability of nutrients, oxygen levels, and concentrations of phytotoxins. The aquatic phase occurs during a period in which temperature and light conditions are optimal for plant growth and development, implying the need for adaptations. Not only do trees persist in a dormant state, they grow vigorously during most of the year, including the aquatic period. The regularity of flooding may have enhanced the evolution of specific traits, which partially are well known from floodplain trees in other tropical and in temperate regions. Different kinds of adaptations are found at the level of structural, physiological, and phenological traits. Combinations of adaptations regarding seed germination, seedling development, and traits of roots, shoots, and leaves result in a variety of growth strategies among trees. These lead to specific species distributions and zonations along the flooding gradient and within Amazonian floodplain systems (nutrient-rich white-water várzea and nutrient-poor black-water igapó).

Resumo

As florestas alagáveis da Amazônia estão sujeitas à urna inundação anual que pode ultrapassar 10 metros. Plântulas e árvores adultas ficam parcialmente ou completamente submersas por períodos de até sete meses por ano. O pulso monomodal de inundação dos rios gera alteraccões drásticas na biodisponibilidade de nutrientes, na concentração de oxigênio e de phytotoxinas. A fase aquática ocorre em um período do ano em que as condições de luz e temperatura são ideais para o crescimento e desenvolvimento das plantas, implicando em urna necessidade das plantas a se adaptarem. As espécies arbóreas não apenas sobrevivem em um estado de dormência, mas crescem vigorosamente durante quase todo o ano, inclusive na fase aquática. Inundações previsíveis e regulares podem ter aumentado a evolução de características específicas, que parcialmente já são conhecidas em outras espécies de áreas alagáveis em regiões trapicais e temperadas. Diferentes tipos de adaptações são encontradas a nível estrutural, fisiológico e fenológico. A combinação de adaptações levando em consideração a germinação das sementes, o desenvolvimento das plântulas, e a estrutura das raízes, caules e folhas resulta em urna variedade de estratégias de crescimento entre as espécies. Isto leva a distribuições específicas das espécies, zonações ao longo do gradiente de inundação e dentro dos sistemas amazônicos (a várzea, com águas ricas em nutrientes, e o igapó, com águas pobres em nutrientes).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Armstrong, W., R. Brändie &M. B. Jackson. 1994. Mechanisms of flood tolerance in plants. Acta Botanica Neerlandica 43: 307–358.

    CAS  Google Scholar 

  • Balslev, H., J. Luteyn, B. Oellgaard &L. B. Holm-Nielsen. 1987. Composition and structure of adjacent unflooded and floodplain forest in Amazonian Ecuador. Opera Botanica 92: 37–57.

    Google Scholar 

  • Bolhar-Nordenkampf, H. R. &G. Draxler. 1993. Functional leaf anatomy. Pp. 91–112in D. O. Hall, J. J. O. Scurlock, H. R. Bolhar-Nordenkampf, R. C. Leegood & S. P. Long (eds.), Photosynthesis and production in a changing environment. Chapman and Hall, London.

    Google Scholar 

  • — &M. Götzl. 1992. Chlorophyllfluoreszenz als Indikator der mit der Seehöhe zunehmender Stressbelastung von Fichtennadeln. FBVA Berichte (Schriftenreihe der Forstlicher Bundesveranstalter) 67: 119–131.

    Google Scholar 

  • Borchert, R. 1994. Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology 75: 1437–1449.

    Google Scholar 

  • Campbell, D. G., D. C. Daly, G. T. Prance &U. N. Maciel. 1986. Quantitative ecological inventory of terra firme and várzea tropical forest on the Rio Xingu, Brazilian Amazon. Brittonia 38: 369–393.

    Google Scholar 

  • Carlier, P., H. Hannachi &G. Mouvier. 1986. The chemistry of carbonyl compounds in the atmosphere: A review. Atmospheric Environment 20: 2079–2099.

    CAS  Google Scholar 

  • Colmer, T. D., M. R. Gibberd, A. Wiengweera &T. K. Tinh. 1998. The barrier to radial oxygen loss from roots of rice (Oryza sativa L.) is induced by growth in stagnant solution. Journal of Experimental Botany 49: 1431–1436.

    CAS  Google Scholar 

  • Crawford, R. M. M. 1989. The anaerobic retreat. Pp. 105–129in R. M. M. Crawford (ed.), Studies in plant survival: Ecological case histories of plant adaptation to adversity. Studies in Ecology, 11. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • —. 1992. Oxygen availability as an ecological limit to plant distribution. Advances in Ecological Research 23: 93–185.

    CAS  Google Scholar 

  • Davis, T. A. W. &P. W. Richards. 1934. The vegetation of Moraballi Creek, British Guiana: An ecological study of a limited area of tropical rain forest. Journal of Ecology 22: 106–155.

    CAS  Google Scholar 

  • De Simone, O., E. Müller, W. J. Junk &W. Schmidt. 2002a. Adaptations of Central Amazon tree species to prolonged flooding: Root morphology and leaf longevity. Functional Plant Biology 29: 1025–1035.

    Google Scholar 

  • —,K. Haase, E. Müller, W. J. Junk, G. A. Gonsior &W. Schmidt. 2002b. Impact of root morphology on metabolism and oxygen distribution in roots and rhizosphere from two Central Amazon floodplain tree species. Functional Plant Biology 29: 1025–1035.

    Google Scholar 

  • —,E. Müller, W. J. Junk, K. Richau &W. Schmidt. 2003a. Iron distribution in three Central Amazon tree species from Whitewater inundation areas (várzea) subjected to different iron regimes. Trees 17: 535–541.

    Google Scholar 

  • —,K. Hasse, E. Müller, W. J. Junk, K. Hartmann, L. Schreiber &W. Schmidt. 2003b. Apoplasmic barriers and oxygen transport properties of hypodermal cell walls in roots from four Amazonian tree species. Plant Physiology 132(1): 206–217.

    PubMed  Google Scholar 

  • Dezzeo, N., M. Worbes, I. Ishii &R. Herrera. 2003. Annual tree rings revealed by radiocarbon dating in seasonally flooded forest of the Mapire River, a tributary of the lower Orinoco River, Venezuela. Plant Ecology 168: 165–175.

    Google Scholar 

  • Dumont, J. F., S. Lamotte &F. Kahn. 1990. Wetland and upland forest ecosystems in Peruvian Amazonia: Plant species diversity in the light of some geological and botanical evidence. Forest Ecology and Management 33/34: 125–139.

    Google Scholar 

  • Ferreira, C. S. 2002. Germinação e adaptações metabólicas e morfo-anatômicas em plântulas deHimatanthus succuuba (Spruce) Wood., de ambientes de várzea e terra firme na Amazônia Central. Master’s thesis, Univ. do Amazonas, Instituto Nacional de Pesquisas da Amazônia, Manaus.

    Google Scholar 

  • Ferreira, L. V. 1991. O efeito do periodo de inundação na zonação de comunidades, fenologia e regeneração em urna floresta de igapó na Amazonia Central. Master’s thesis, Instituto Nacional de Pesquisas da Amazônia, Manaus.

    Google Scholar 

  • —. 1997. Is there a difference between the white water floodplain forests (várzea) and black water floodplain forests (igapó) in relation to number of species and density? Revista Brasileira de Ecologia 2: 60–62.

    Google Scholar 

  • —. 2000. Effects of flooding duration on species richness, floristic composition and forest structure in river margin habitat in Amazonian blackwater floodplain forests: Implications for future design of protected areas. Biodiversity and Conservation 9: 1–14.

    CAS  Google Scholar 

  • Furch, B. 1984. Untersuchungen zur Überschwemmungstoleranz von Bäumen der Várzea und des Igapó: Blattpigmente. Biogeographica 19: 77–83.

    Google Scholar 

  • —,A. F. F. Corrêa, J. A. S. M. Nunes &K. R. Otto. 1985. Lichtklimadaten in drei aquatischen Ökosystemen verschiedener physikalisch-chemischer Beschaffenheit, I. Abschwächung, Rückstreuung und Vergleich zwischen Einstrahlung, Rückstrahlung und sphärisch gemessener Quantenstromdichte (PAR). Amazoniana 9: 411–430.

    Google Scholar 

  • Furch, K. 1997. Chemistry of várzea and igapó soils and nutrient inventory in their floodplain forests. Pp. 47–68in W. J. Junk (ed.), The Central Amazon floodplain: Ecology of a pulsing system. Ecological Studies, 126. Springer Verlag, Heidelberg.

    Google Scholar 

  • Geissler, N., R. Schnetter &M.-L. Schnetter. 2002. The pneumatodes ofLaguncularia racemosa: Little known rootlets of surprising structure, and notes on a new fluorescent dye for lipophilic substances. Plant Biology 6: 729–739.

    Google Scholar 

  • Gentry, A. H. 1982. Patterns of neotropical plant species diversity. Evolutionary Biology 15: 1–83.

    Google Scholar 

  • —. 1992. Tropical forest biodiversity distributional patterns and their conservational significance. Oikos 6: 19–28.

    Google Scholar 

  • Gessner, F. 1968. Zur ökologischen Problematik der Überschwemmungswälder des Amazonas. Internationale Revue der Gesamten Hydrobiologie 53: 525–547.

    Google Scholar 

  • Gibbs, J. &H. Greenway. 2003. Mechanisms of anoxia tolerance in plants, I. Growth, survival and anaerobic catabolism. Functional Plant Biology 30: 1–47.

    CAS  Google Scholar 

  • Gill, C. J. 1970. The flooding tolerance of woody species: A review. Forestry Abstracts 31: 671–688.

    Google Scholar 

  • Gottsberger, G. 1978. Seed dispersal by fish in the inundated regions of Humaitá, Amazonia. Biotropica 10: 170–183.

    Google Scholar 

  • Goulding, M. 1980. Interactions of fishes with fruits and seeds. Pp. 217–232in M. Goulding (ed.), The fishes and the forest: Explorations in Amazonian natural history. Univ. of California Press, Berkeley.

    Google Scholar 

  • Graffmann,K. C. 2000. Die Bedeutung der Druckventilation für die Sauerstoffversorgung des Wurzelsystems bei Bäumen der amazonischen Überschwemmungswälder. Ph.D. diss., Univ. Köln.

  • Granville, J. J. 1974. Aperçu sur la structure des pneumatophores de deux espèces des sols hydromorphes en Guyane,Mauritia flexuosa L. etEuterpe oleracea Mart. (Palmae): Généralisation au système respiratoire racinare d’autres palmiers. Cahier Orstom Série Biologie 23: 3–22.

    Google Scholar 

  • Greenway, H. &J. Gibbs. 2003. Mechanisms of anoxia tolerance in plants, II. Energy requirements for maintenance and energy distribution to essential processes. Functional Plant Biology 30: 999–1036.

    CAS  Google Scholar 

  • Gribel, R. &P. E. Gibbs. 2002. High outbreeding as a consequence of selfed ovule mortality and single vector bat pollination in the Amazonian treePseudobombax munguba (Bombacaceae). International Journal of Plant Sciences 163: 1035–1043.

    Google Scholar 

  • —,— &A. L. Queióz. 1999. Flowering phenology and pollination biology ofCeiba pentandra (Bombacaceae) in Central Amazonia. Journal of Tropical Ecology 15: 247–263.

    Google Scholar 

  • Haase K., O. De Simone, W. J. Junk &W. Schmidt. 2003. Internal oxygen transport in cuttings from flood-adapted várzea tree species. Tree Physiology 23(15): 1069–1076.

    PubMed  Google Scholar 

  • Hall, P., L. C. Orrell &K. S. Bawa. 1994. Genetic diversity and mating system in a tropical tree,Carapa guianensis (Meliaceae). American Journal of Botany 81: 1104–1111.

    Google Scholar 

  • Hamilton, S. K., S. J. Sippel &J. M. Melack. 2002. Comparison of inundation patterns among major South American floodplains. Journal of Geophysical Research-Atmospheres 107: 8038.

    Google Scholar 

  • Holzinger, R., L. Sandoval-Soto, S. Rottenberger, P. J. Crutzen &J. Kesselmeier. 2000. Emissions of volatile organic compounds fromQuercus ilex L. measured by Proton Transfer Reaction Mass Spectrometry under different environmental conditions. Journal of Geophysical Research—Atmospheres 105: 20573–20579.

    CAS  Google Scholar 

  • Hook, D. D. 1984. Adaptations to flooding with fresh water. Pp. 265–294in T. T. Kozlowski (ed.), Flooding and plant growth. Academic Press, Orlando, FL.

    Google Scholar 

  • Hose, E., L. Schreiber, D. Clarskon, E. Steudle &W. Hartung. 2001. The exodermis: A variable apoplastic barrier in roots. Journal of Experimental Botany 52: 2245–2264.

    PubMed  CAS  Google Scholar 

  • Irion, G., W. J. Junk &J. A. S. N. Mello. 1997. The large Central Amazonian river floodplains near Manaus: Geological, climatological, hydrological and geomorphological aspects. Pp. 23–46in W. J. Junk (ed.), The Central Amazon floodplain: Ecology of a pulsing system. Ecological Studies, 126. Springer Verlag, Heidelberg.

    Google Scholar 

  • Jackson, M. B. &W. Armstrong. 1999. Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biology 1: 274–287.

    CAS  Google Scholar 

  • James, E. K., M. D. Loureiro, A. Pott, V. J. Pott, C. M. Martins, A. A. Franco &J. I. Sprent. 2001. Flooding-tolerant legume symbioses from the Brazilian pantanal. New Phytologist 150: 723–738.

    Google Scholar 

  • Joly, C. A. &R. M. M. Crawford. 1982. Variation in tolerance and metabolic responses to flooding in some tropical trees. Journal of Experimental Botany 33: 799–809.

    Google Scholar 

  • Junk, W. J. 1984. Ecology of the várzea, floodplain of Amazonian Whitewater rivers. Pp. 215–243in H. Sioli (ed.), The Amazon: Limnology and landscape ecology of a mighty tropical river and its basin. W. Junk, Dordrecht.

    Google Scholar 

  • —. 1989. Flood tolerance and tree distribution in Central Amazonian floodplains. Pp. 47–64in L. B. Nielsen, I. C. Nielsen & H. Balslev (eds.), Tropical forests: Botanical dynamics, speciation and diversity. Academic Press, London.

    Google Scholar 

  • — (ed.). 1997. The Central Amazon floodplain: Ecology of a pulsing system. Ecological Studies, 126. Springer Verlag, Heidelberg.

    Google Scholar 

  • —,P. B. Bayley, &R. E. Sparks. 1989. The flood pulse concept in river-floodplain systems. Pp. 110–127in D. P. Dodge (ed.), Proceedings of the International Large River Symposium. Fisheries and Oceans, Communications Directorate, Ottawa.

    Google Scholar 

  • Keel, S. H. K. &G. T. Prance. 1979. Studies of the vegetation of a white-sand black-water igapó (Rio Negro, Brazil). Acta Amazónica 9: 645–655.

    Google Scholar 

  • Kesselmeier, J. 2001. Exchange of short-chain oxygenated volatile organic compounds (VOCs) between plants and the atmosphere: A compilation of field and laboratory studies. Journal of Atmospheric Chemistry 39(3): 219–233.

    CAS  Google Scholar 

  • — &M. Staudt. 1999. Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology. Journal of Atmospheric Chemistry 33: 23–88.

    CAS  Google Scholar 

  • —,K. Bode, U. Hofmann, H. Müller, L. Schäfer, A. Wolf, P. Ciccioli, E. Brancaleoni, A. Cecinato, M. Frattoni, P. Foster, C. Ferrari, V. Jacob, J. L. Fugit, L. Dutaur, V. Simon &L. Torres. 1997. Emission of short chained organic acids, aldehydes and monoterpenes fromQuercus ilex L. andPinus pinea L. in relation to physiological activities, carbon budget and emission algorithms. Atmospheric Environment 31: 119–133.

    CAS  Google Scholar 

  • Kimmerer, T. W. &T. T. Kozlowski. 1982. Ethylene, ethane, acetaldehyde, and ethanol-production by plants under stress. Plant Physiology 69: 840–847.

    PubMed  CAS  Google Scholar 

  • — &R. C. McDonald. 1987. Acetaldehyde and ethanol biosynthesis in leaves of plants. Plant Physiology 84: 1204–1209.

    PubMed  CAS  Google Scholar 

  • Kotzias, D., C. Konidara &C. Sparta. 1997. Volatile carbonyl compounds of biogenic origin: Emission and concentration in the atmosphere. Pp. 67–87in G. Helas, J. Slanina & R. Steinbrecher (eds.), Biogenic volatile organic compounds in the atmosphere. SPB Academic Publishers, Amsterdam.

    Google Scholar 

  • Kozlowski, T. T. 1982. Water supply and tree growth, 11. Flooding. Forest Abstracts, Commonwealth Forestry Bureau 43: 145–161.

    Google Scholar 

  • —. 1984. Plant responses to flooding of soil. BioScience 34: 162–166.

    Google Scholar 

  • Krack, S. 2000. Untersuchungen zur Überflutungstoleranz von Bäumen (Jungpflanzen) der zentralamazonischen Weißwasser-Überschwemmungswälder (Varzeá) bei Manaus/Amazonas. Master’s thesis, Univ. Würzburg.

  • Kreuzwieser, J., U. Scheerer &H. Rennenberg. 1999. Metabolic origin of acetaldehyde emitted by poplar (Populus tremula ×P. alba) trees. Journal of Experimental Botany 50: 757–765.

    CAS  Google Scholar 

  • —,F. Kuhnemann, A. Martis, H. Rennenberg &W. Urban. 2000. Diurnal pattern of acetaldehyde emission by flooded poplar trees. Physiologia Plantarum 108: 79–86.

    CAS  Google Scholar 

  • Kubitzki, K. 1989. Die Flora der amazonischen Überschwemmungswälder und ihre ökologischen Beziehungen. Pp. 215–226in G. Hartmann (ed.), Amazonien im Umbruch. Dietrich Reimer Verlag, Berlin.

    Google Scholar 

  • — &A. Ziburski. 1994. Seed dispersal in flood plain forests of Amazonia. Biotropica 26: 30–43.

    Google Scholar 

  • Kuhn, U., S. Rottenberger, T. Biesenthal, C. Ammann, A. Wolf, G. Schebeske, S. T. Oliva, T. M. Tavares &J. Kesselmeier. 2002. Exchange of short-chain monocarboxyclic acids by vegetation at a remote tropical forest site in Amazonia. Journal of Geophysical Research—Atmospheres 107(D20): 8069; doi:10.1029/2000JD000303.

    Google Scholar 

  • Larcher, W. 1994. Ökophysiologie der Pflanzen: Leben, Leistung und Streßbewältigung der Pflanzen in ihrer Umwelt, 5. Aufl. Ulmer Stuttgart, UTB für Wissenschaft.

    Google Scholar 

  • Li, P., K. A. Perreau, E. Covington, C. H. Song, G. R. Carmichael &V. H. Grassian. 2001. Heterogeneous reactions of volatile organic compounds on oxide particles of the most abundant crustal elements: Surface reactions of acetaldehyde, acetone, and propionaldehyde on SiO2, Al2O3, Fe2O3, TiO2, and CaO. Journal of Geophysical Research—Atmospheres 106: 5517–5529.

    CAS  Google Scholar 

  • Mannheimer, S., G. Bevilacqua, E. P. Caramaschi &F. R. Scarano. 2003. Evidence for seed dispersal by the catfishAuchenipterichthys longimanus in an Amazonian lake. Journal of Tropical Ecology 19: 215–218.

    Google Scholar 

  • Medina, E. 1983. Adaptations of tropical trees to moisture stress. Pp. 225–237in F. B. Golley (ed.), Ecosystems of the world: Tropical rain forest ecosystems. Elsevier Scientific Publishing, Amsterdam.

    Google Scholar 

  • Medri, M. E., E. Bianchini, J. A. Pimenta, S. Colli & C. Müller. 2002. Estudos sobre a tolerância ao alagamento em espécies arbóreas nativas da bacia do rio Tibagi. Pp. 133–172in M. E. Medri, E. Bianchini, O. A. Shibatta & J. A. Pimenta (eds.), A bacia do Rio Tibagi. Published by the editors, Londrinad.

  • Meyer, U. 1991. Feinwurzelsysteme und Mykorrhizatypen als Anpassungsmechanismen in Zentralamazonischen Überschwemmungswäldern: Igapó und Várzea. Ph.D. diss., Univ. Hohenheim.

  • Miyamoto, N., E. Steudle, T. Hirasawa &R. Lafitte. 2001. Hydraulic conductivity of rice roots. Journal of Experimental Botany 52: 1835–1846.

    PubMed  CAS  Google Scholar 

  • Moegenburg, S. M. 2002. Spatial and temporal variation in hydrochory in Amazonian floodplain forest. Biotropica 34: 606–612.

    Google Scholar 

  • Mohan, R., M. A. Bajar &P. E. Kolattukudy. 1993a. Induction of a tomato anionic peroxidase gene (tap1) by wounding in transgenic tobacco and activation of tapl/GUS and tap2/GUS chimeric gene fusions in transgenic tobacco by wounding and pathogen attack. Plant Molecular Biology 21: 341–354.

    PubMed  CAS  Google Scholar 

  • —,P. Vijayan &P. E. Kolattukudy. 1993b. Developmental and tissue-specific expression of a tomato anionic peroxidase (tap l) gene by a minimal promoter with wound and pathogen induction by an additional 5′ flanking region. Plant Molecular Biology 22: 475–490.

    PubMed  CAS  Google Scholar 

  • Moreira, F. M. d. S., M. F. d. Silva &S. M. D. Faria. 1992. Occurrence of nodulation in legume species in the Amazon region of Brazil. New Phytologist 121: 563–570.

    Google Scholar 

  • Moreira, F. W., F. M. d. S. Moreira &M. F. d. Silva. 1995. Germinaçao, crescimento inicial e nodulaçao em viveiro de saboarana (Swartzia laevicarpa AMSHOFF). Acta Amazonica 25: 149–160.

    Google Scholar 

  • Müller, E. &W. J. Junk. 2000. The influence of waterlogging on root water uptake and transpiration of trees of the Central Amazonian várzea. Verhandlungen des Internationalen Vereins für Limnologie 27: 1725–1729.

    Google Scholar 

  • Nascimento, B. M., O. L. E. Mota, O. M. Lousade &C. D. J. Reis. 1998. The morphological-anatomical adaptation of young plants ofInga vera Willd. andVirola surinamensis (Rolland, ex Rottb.) to submersion. Boletim do Museu Paraense Emilio Goeldi Serie Botanica 14: 93–107.

    Google Scholar 

  • Nevo, E. 1993. Adaptive speciation at the molecular and organismal levels and its bearing on Amazonian biodiversity. Evolución Biológica 7: 207–249.

    Google Scholar 

  • Oliveira,A. C. 1998. Aspectos da dinâmica populacional deSalix martiana Leyb. (Salicaceae) em áreas de várzea da Amazônia Central. Master’s thesis, INPA/FUA.

  • — &M. T. F. Piedade. 2002. Implicações ecológicas da fenologia reprodutiva deSalix martiana Leyb. (Salicaceae) em áreas de várzea da Amazônia Central. Acta Amazonica 32: 377–385.

    Google Scholar 

  • Paiva, J. R. d., P. D. S. Gonçalves &L. Gasparotto. 1985. Genetic variation amongHevea provenances. Pesquisa Agropecuaria Brasileira 20: 97–108.

    Google Scholar 

  • Parolin, P. 1997. Auswirkungen periodischer Vernässung und Überflutung auf Phänologie, Photosynthese und Blattphysiologie von Baumarten unterschiedlicher Wachstumsstrategie in zentralamazonischen Überschwemmungsgebieten. Herbert Utz Verlag Wissenschaft, Munich.

    Google Scholar 

  • —. 2000a. Phenology and CO2 assimilation of trees in Central Amazonian floodplains. Journal of Tropical Ecology 16: 465–473.

    Google Scholar 

  • —. 2000b. Seed mass in Amazonian floodplain forests with contrasting nutrient supplies. Journal of Tropical Ecology 16: 417–428.

    Google Scholar 

  • —. 2001a.Senna reticulata, a pioneer tree from Amazonian várzea floodplains. Botanical Review 67: 239–254.

    Google Scholar 

  • —. 2001b. Seed germination and early establishment in 12 tree species from nutrient-rich and nutrient-poor Central Amazonian floodplains. Aquatic Botany 70: 89–103.

    Google Scholar 

  • —. 2001c. Morphological and physiological adjustments to waterlogging and drought in seedlings of Amazonian floodplain trees. Oecologia 128: 326–335.

    Google Scholar 

  • —. 2002a. Submergence tolerance vs. escape from submergence: Two strategies of seedling establishment in Amazonian floodplains. Environmental and Experimental Botany 48: 177–186.

    Google Scholar 

  • —. 2002b. Seasonal changes of specific leaf mass and leaf size in trees of Amazonian floodplains. Phyton 42: 169–186.

    Google Scholar 

  • —. 2002c. Life history and environment ofCecropia latiloba in Amazonian floodplains. Revista de Biología Tropical 50: 531–545.

    PubMed  Google Scholar 

  • — &W. J. Junk. 2002. The effect of submergence on seed germination in trees from Amazonian floodplains. Boletim Museu Goeldi 18: 321–329.

    Google Scholar 

  • —,N. Armbrüster, F. Wittmann, L. V. Ferreira, M. T. F. Piedade &W. J. Junk. 2002a. Phenology of trees in Central Amazonian floodplains. Pesquisas Botânicas 52: 195–222.

    Google Scholar 

  • —— &W. J. Junk. 2002b. Seasonal changes of leaf nitrogen content in trees of Amazonian floodplains. Acta Amazonica 32: 231–240.

    CAS  Google Scholar 

  • Piedade, M. T. F., W. J. Junk &S. P. Long. 1991. The productivity of the C4 grassEchinochloa polystachya on the Amazon floodplain. Ecology 72: 1456–1463.

    Google Scholar 

  • Pimenta, J. A., E. Bianchini &M. F. Medri. 1998. Adaptations to flooding by tropical trees: morphological and anatomical modifications. Pp. 157–176in F. R. Scarano & A. C. Franco (eds.), Ecophysiological strategies of xerophytic and amphibious plants in the Neotropics. Serie Oecologia Brasiliensis, 4. PPGE-UFRJ, Rio de Janeiro.

    Google Scholar 

  • Ponnamperuma, F. N. 1972. The chemistry of submerged soils. Advances in Agronomy 24: 29–95.

    CAS  Google Scholar 

  • —. 1984. Effects of flooding on soils. Pp. 9–45in T. T. Kozlowski (ed.), Flooding and plant growth. Academic Press, Orlando, FL.

    Google Scholar 

  • Prance, G. T. 1979. Notes on the vegetation of Amazonia, III. Terminology of Amazonian forest types subjected to inundation. Brittonia 31: 26–38.

    Google Scholar 

  • Reich, P. B. &P. Borchert. 1984. Water stress and tree phenology in a tropical dry forest in the lowlands of Costa Rica. Journal of Ecology 72: 61–74.

    Google Scholar 

  • Ribeiro, M. N. G. &J. Adis. 1984. Local rainfall variability: A potential bias for bioecological studies in the Central Amazon. Acta Amazonica 14: 159–174.

    Google Scholar 

  • Roças, G., F. R. Scarano &C. F. Barros. 2001. Variation in leaf anatomy ofAlchornea triplinervia (Spreng.) Müll. Arg. (Euphorbiaceae) under different light and soil-water regimes. Botanical Journal of the Linnean Society 136: 231–238.

    Google Scholar 

  • Rosales, J. G., C. Vispo, N. Dezzeo, L. Blanco-Belmonte, C. Kaab-Vispo, N. González, F. Daza, C. Bradley, D. Gilvear, G. Escalante, N. Chacón &G. Petts. 2002. Ecohydrology of riparian forests in the Orinoco River Basin. Pp. 93–110in M. McClain (ed.), The ecohydrology of South American rivers and wetlands. Special Publication 6. International Association of Hydrological Sciences, Wallingford.

    Google Scholar 

  • Roth, I. 1984. Stratification of tropical forests as seen in leaf structure. Junk, The Hague.

    Google Scholar 

  • Rottenberger,S. 2003. Exchange of oxygenated volatile organic compounds between Amazonian and European vegetation and the atmosphere. Ph.D. diss., Univ. of Mainz.

  • -,U. Kuhn, A. Wolf, G. Schebeske, S. T. Oliva, T. Tavares & J. Kesselmeier. In press. Exchange of short-chain aldehydes between Amazonian vegetation and the atmosphere. Ecological Applications.

  • Scarano, F. R. 1998. A comparison of dispersal, germination and establishment of woody plants subjected to distinct flooding regimes in Brazilian flood-prone forests and estuarine vegetation. Pp. 176–193 in F. R. Scarano & A. C. Franco (eds.), Ecophysiological strategies of xerophytic and amphibious plants in the Neotropics. Serie Oecologia Brasiliensis, 4. PPGE-UFRJ, Rio de Janeiro.

    Google Scholar 

  • — &R. M. M. Crawford. 1992. Ontogeny and the concept of anoxia-tolerance: The case of the Amazonian leguminous treeParkia pendula. Journal of Tropical Ecology 8: 349–352.

    Google Scholar 

  • —,J. H. Cattânio &R. M. M. Crawford. 1994. Root carbohydrate storage in young saplings of an Amazonian tidal várzea forest before the onset of the wet season. Acta Botanica Brasilica 8: 129–139.

    Google Scholar 

  • —,K. T. Ribeiro, L. F. D. Moraes &H. C. Lima. 1997. Plant establishment on flooded and unflooded patches of a freshwater swamp forest in southeastern Brazil. Journal of Tropical Ecology 14: 793–803.

    Google Scholar 

  • —,R. I. Rios &F. A. Esteves. 1998. Tree species richness, diversity and flooding regime: Case studies of recuperation after anthropic impact in Brazilian flood-prone forests. International Journal of Ecology and Environmental Sciences 24: 223–235.

    Google Scholar 

  • —,H. M. Duarte, K. T. Ribeiro, P. J. F. P. Rodrigues, E. M. B. Barcellos, A. C. Franco, J. Brulfert, E. Deléens &U. Lüttge. 2001. Four sites with contrasting environmental stress in southeastern Brazil: Relations of species, life form diversity, and geographical distribution to ecophysiologieal parameters. Botanical Journal of the Linnean Society 136: 345–364.

    Google Scholar 

  • —,T. S. Pereira &G. Rocas. 2003. Seed germination during flotation and seedling growth ofCarapa guianensis, a tree from flood-prone forests of the Amazon. Plant Ecology 168: 291–296.

    Google Scholar 

  • Schlüter, U. B. &B. Furch. 1992. Morphologische, anatomische und physiologische Untersuchungen zur Überflutungstoleranz des BaumesMacrolobium acaciaefolium, charakteristisch f:ur die Weißund Schwarzwasserüberschwemmungswälder bei Manaus, Amazonas. Amazoniana 12: 51–69.

    Google Scholar 

  • —,— &C. A. Joly. 1993. Physiological and anatomical adaptations by youngAstrocaryum jauari Mart. (Arecaceae) in periodically inundated biotopes of Central Amazonia. Biotropica 25: 384–396.

    Google Scholar 

  • Scholander, P. F. &M. O. Perez. 1968. Sap tension in flooded trees and bushes of the Amazon. Plant Physiology 43: 1870–1873.

    PubMed  Google Scholar 

  • Schöngart, J., M. T. F. Piedade, S. Ludwigshausen, V. Horna &M. Worbes. 2002. Phenology and stem-growth periodicity of tree species in Amazonian floodplain forests. Journal of Tropical Ecology 18: 581–597.

    Google Scholar 

  • Silvers K., J. B. Skillman &J. W. Dalling. 2003. Seed germination, seedling growth and habitat partitioning in two morphotypes of the tropical pioneer treeTrema micrantha in a seasonal forest in Panama. Journal of Tropical Ecology 19: 27–34.

    Google Scholar 

  • Singh, H. B. &P. L. Hanst. 1981. Peroxyacetyl Nitrate (PAN) in the unpolluted atmosphere: An important reservoir for nitrogen oxides. Geophysical Research Letters 8: 941–944.

    CAS  Google Scholar 

  • —,M. Kanakidou, P. J. Crutzen &D. J. Jacob. 1995. High concentrations and photochemical fate of oxygenated hydrocarbons in the global troposphere. Nature 378: 50–54.

    CAS  Google Scholar 

  • —,A. Tabazadeh, Y. Fukui, I. Bey, R. Yantosca, D. Jacob, F. Arnold, K. Wohlfrom, E. Atlas, F. Flocke, D. Blake, N. Blake, B. Heikes, J. Snow, R. Talbot, G. Gregory, G. Sachse, S. Vay &Y. Kondo. 2000. Distribution and fate of selected oxygenated organic species in the troposphere and stratosphere over the Atlantic. Journal of Geophysical Research—Atmospheres 105: 3795–3805.

    CAS  Google Scholar 

  • Sioli, H. 1954. Betrachtungen über den Begriff “Fruchtbarkeit” eines Gebiets anhand der Verhältnisse in Böden und Gewässern Amazoniens. Forschung Fortschritt 28: 65–72.

    Google Scholar 

  • Sippel, S. J., S. K. Hamilton, J. M. Melack &E. M. M. Novo. 1998. Passive microwave observations of inundation area and the area/stage relation in the Amazon river floodplain. International Journal of Remote Sensing 19: 3055–3074.

    Google Scholar 

  • Talbot, R. W., M. O. Andreae, H. Berresheim, D. J. Jacob &K. M. Beecher. 1990. Sources and sinks of formic, acetic, and pyruvic acids over Central Amazonia, 2. Wet Season. Journal of Geophysical Research—Atmospheres 95: 16799–16811.

    CAS  Google Scholar 

  • Thompson, A. M. 1992. The oxidizing capacity of the earths atmosphere: Probable past and future changes. Science 256: 1157–1165.

    PubMed  CAS  Google Scholar 

  • Vartapetian, B. B., I. N. Andreeva, I. P. Generozova, L. I. Polyakova, I. P. Maslova, Y. I. Dolgikh &A. Y. Stepanova. 2003. Functional electron microscopy in studies of plant response and adaptation to anaerobic stress. Annals of Botany 91 (Special Issue SI): 155–172.

    PubMed  CAS  Google Scholar 

  • Visser, E. J. W., L. A. C. J. Voesenek, B. B. Vartapetian &M. B. Jackson. 2003. Flooding and plant growth. Annals of Botany 91 (Special Issue SI): 107–109.

    CAS  Google Scholar 

  • Waldhoff, D. &B. Furch. 1998. Effect of waterlogging and flooding on some abundant tree species of Central Amazonia examined under defined conditions in climatic chambers. Proceedings / International Association of Theoretical and Applied Limnology 26: 1886–1887.

    Google Scholar 

  • ——. 2002. Leaf morphology and anatomy in eleven tree species from Central Amazonian floodplains (Brazil). Amazoniana 17: 79–94.

    Google Scholar 

  • —,W. J. Junk &B. Furch. 1998. Responses of three Central Amazonian tree species to drought and flooding under controlled conditions. International Journal of Ecology and Environmental Sciences 24: 237–252.

    Google Scholar 

  • ———. 2000. Comparative measurements of chlorophyll a fluorescence parameters ofNectandra amazonum under different environmental conditions in climate controlled chambers. Proceedings / International Association of Theoretical and Applied Limnology 27: 2052–2056.

    Google Scholar 

  • —,B. Furch &W. J. Junk. 2002. Fluorescence parameters, chlorophyll concentration, and anatomical features as indicators for flood adaptation of an abundant tree species in Central Amazonia:Symmeria paniculata. Environmental and Experimental Botany 48: 225–235.

    CAS  Google Scholar 

  • Williamson, G. B. &F. Costa. 2000. Dispersal of amazonian trees: Hydrochory inPentaclethra macroloba. Biotropica 32: 548–552.

    Google Scholar 

  • —— &C. V. Minte Vera. 1999. Dispersal of Amazonian trees: Hydrochory inSwartzia polyphylla. Biotropica 31: 460–465.

    Google Scholar 

  • Wilske, B., R. Holzinger &J. Kesselmeier. 2001. Evidence for ethanolic fermentation in lichens during periods of high thallus water content. Symbiosis 31: 95–111.

    CAS  Google Scholar 

  • Wittmann, F. &W. J. Junk. 2003. Sapling communities in Amazonian white-water forests. Journal of Biogeography 30(10): 1533–1544.

    Google Scholar 

  • — &P. Parolin. 1999. Phenology of six tree species from Central Amazonian várzea. Ecotropica 5: 51–57.

    Google Scholar 

  • -& -. In press. Above-ground roots in Amazonian floodplain trees. Biotropica.

  • Worbes, M. 1985. Structural and other adaptations to long-term flooding by trees in Central Amazonia. Amazoniana 9: 459–484.

    Google Scholar 

  • —. 1986. Lebensbedingungen und Holzwachstum in zentralamazonischen Überschwemmungswäldern. Scripta Geobotanica. Erich Goltze, Göttingen.

    Google Scholar 

  • —. 1989. Growth rings, increment and age of trees in inundation forests, savannas and a mountain forest in the Neotropics. IAWA Bulletin, n.s., 10: 109–122.

    Google Scholar 

  • —. 1992. Occurrence of seasonal climate and tree-ring research in the Tropics. Lundqua Report 34: 338–342.

    Google Scholar 

  • —. 1996. Rhythmisches Wachstum und anatomisch-morphologische Anpassungen an Lebensstrategien von Bäumen in zentralamazonischen Überschwemmungswäldern. Mitteilungen der Deutschen Dendrologischen Gesellschaft 82: 155–172.

    Google Scholar 

  • —. 1997. The forest ecosystem of the floodplains. Pp. 223–266in W. J. Junk (ed.), The Central Amazon floodplain: Ecology of a pulsing system. Ecological Studies, 126. Springer Verlag, Heidelberg.

    Google Scholar 

  • — &W. J. Junk. 1989. Dating tropical trees by means of C14 from bomb tests. Ecology 70: 503–507.

    Google Scholar 

  • Ziburski, A. 1991. Dissemination, Keimung und Etablierung einiger Baumarten der Überschwemmungswälder Amazoniens. Pp. 1–96in W. Rauh (ed.), Tropische und subtropische Pflanzenwelt, 77. Akademie der Wissenschaften und der Literatur, Mainz.

    Google Scholar 

  • Zimmermann, H. M., K. Hartmann, L. Schreiber &E. Steudle. 2000. Chemical composition of apoplastic barriers in relation to radial hydraulic conductivity of corn roots (Zea mays L.). Planta 210: 302–311.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parolin, P., De Simone, O., Haase, K. et al. Central Amazonian floodplain forests: Tree adaptations in a pulsing system. Bot. Rev 70, 357–380 (2004). https://doi.org/10.1663/0006-8101(2004)070[0357:CAFFTA]2.0.CO;2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1663/0006-8101(2004)070[0357:CAFFTA]2.0.CO;2

Keywords

Navigation